Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Can you explain why a sequence of operations always gives you perfect squares?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

This is the second article on right-angled triangles whose edge lengths are whole numbers.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

If you think that mathematical proof is really clearcut and universal then you should read this article.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Four jewellers share their stock. Can you work out the relative values of their gems?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

What fractions can you divide the diagonal of a square into by simple folding?

Can you make sense of these three proofs of Pythagoras' Theorem?

Can you rearrange the cards to make a series of correct mathematical statements?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.