The sums of the squares of three related numbers is also a perfect square - can you explain why?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Four jewellers share their stock. Can you work out the relative values of their gems?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Can you make sense of these three proofs of Pythagoras' Theorem?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Can you make sense of the three methods to work out the area of the kite in the square?

If you think that mathematical proof is really clearcut and universal then you should read this article.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

What fractions can you divide the diagonal of a square into by simple folding?

Can you rearrange the cards to make a series of correct mathematical statements?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .