A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

Can you put these shapes in order of size? Start with the smallest.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

If you have only four weights, where could you place them in order to balance this equaliser?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find all the different ways of lining up these Cuisenaire rods?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you fit the tangram pieces into the outline of the child walking home from school?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this junk?

What happens when you try and fit the triomino pieces into these two grids?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these clocks?

How many different rhythms can you make by putting two drums on the wheel?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?