A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Here is a chance to play a version of the classic Countdown Game.

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Unmultiply is a game of quick estimation. You need to find two numbers that multiply together to something close to the given target - fast! 10 levels with a high scores table.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you complete this jigsaw of the multiplication square?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Given the products of adjacent cells, can you complete this Sudoku?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Resources to support understanding of multiplication and division through playing with number.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

A game that tests your understanding of remainders.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?