Using the statements, can you work out how many of each type of rabbit there are in these pens?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you replace the letters with numbers? Is there only one solution in each case?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Have a go at balancing this equation. Can you find different ways of doing it?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you work out some different ways to balance this equation?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Use the information to work out how many gifts there are in each pile.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Given the products of adjacent cells, can you complete this Sudoku?

A game that tests your understanding of remainders.

How would you count the number of fingers in these pictures?