Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you replace the letters with numbers? Is there only one solution in each case?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Use the information to work out how many gifts there are in each pile.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Can you complete this jigsaw of the multiplication square?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

How would you count the number of fingers in these pictures?