Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Given the products of adjacent cells, can you complete this Sudoku?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you work out some different ways to balance this equation?

Can you find what the last two digits of the number $4^{1999}$ are?

Here is a chance to play a version of the classic Countdown Game.

Have a go at balancing this equation. Can you find different ways of doing it?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

A game that tests your understanding of remainders.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This problem is designed to help children to learn, and to use, the two and three times tables.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?