What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

56 406 is the product of two consecutive numbers. What are these two numbers?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Here is a chance to play a version of the classic Countdown Game.

Given the products of adjacent cells, can you complete this Sudoku?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Use the information to work out how many gifts there are in each pile.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

This number has 903 digits. What is the sum of all 903 digits?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you complete this jigsaw of the multiplication square?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?