Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

This problem is designed to help children to learn, and to use, the two and three times tables.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Can you find what the last two digits of the number $4^{1999}$ are?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Find a great variety of ways of asking questions which make 8.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Use the information to work out how many gifts there are in each pile.

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

This number has 903 digits. What is the sum of all 903 digits?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

Number problems at primary level that require careful consideration.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Number problems at primary level that may require determination.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

These pictures and answers leave the viewer with the problem "What is the Question". Can you give the question and how the answer follows?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?