56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Here is a chance to play a version of the classic Countdown Game.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This number has 903 digits. What is the sum of all 903 digits?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

A game that tests your understanding of remainders.

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you find what the last two digits of the number $4^{1999}$ are?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?