The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Number problems at primary level that may require determination.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

This number has 903 digits. What is the sum of all 903 digits?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Use the information to work out how many gifts there are in each pile.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

This task combines spatial awareness with addition and multiplication.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This challenge combines addition, multiplication, perseverance and even proof.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How would you count the number of fingers in these pictures?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?