What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

There were 22 legs creeping across the web. How many flies? How many spiders?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Have a go at balancing this equation. Can you find different ways of doing it?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

This number has 903 digits. What is the sum of all 903 digits?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?