56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

There were 22 legs creeping across the web. How many flies? How many spiders?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Use the information to work out how many gifts there are in each pile.

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Here is a chance to play a version of the classic Countdown Game.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

This task combines spatial awareness with addition and multiplication.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This number has 903 digits. What is the sum of all 903 digits?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?