The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

56 406 is the product of two consecutive numbers. What are these two numbers?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This number has 903 digits. What is the sum of all 903 digits?

Number problems at primary level that may require determination.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

There were 22 legs creeping across the web. How many flies? How many spiders?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Use the information to work out how many gifts there are in each pile.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

This task combines spatial awareness with addition and multiplication.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?