Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This challenge extends the Plants investigation so now four or more children are involved.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you hang weights in the right place to make the equaliser balance?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

If you have only four weights, where could you place them in order to balance this equaliser?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

You have 5 darts and your target score is 44. How many different ways could you score 44?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Find all the numbers that can be made by adding the dots on two dice.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!