Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Here is a chance to play a version of the classic Countdown Game.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you hang weights in the right place to make the equaliser balance?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Got It game for an adult and child. How can you play so that you know you will always win?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?