What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Can you find what the last two digits of the number $4^{1999}$ are?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

A collection of resources to support work on Factors and Multiples at Secondary level.

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Can you find any perfect numbers? Read this article to find out more...

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Have you seen this way of doing multiplication ?

Find the highest power of 11 that will divide into 1000! exactly.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A game that tests your understanding of remainders.

Can you work out what size grid you need to read our secret message?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Substitution and Transposition all in one! How fiendish can these codes get?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Explore the relationship between simple linear functions and their graphs.