Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A collection of resources to support work on Factors and Multiples at Secondary level.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Is there an efficient way to work out how many factors a large number has?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Can you find any perfect numbers? Read this article to find out more...

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Can you work out what size grid you need to read our secret message?

Substitution and Transposition all in one! How fiendish can these codes get?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you find a way to identify times tables after they have been shifted up?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Find the highest power of 11 that will divide into 1000! exactly.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?