List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Is there an efficient way to work out how many factors a large number has?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find any perfect numbers? Read this article to find out more...

Given the products of diagonally opposite cells - can you complete this Sudoku?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A game in which players take it in turns to choose a number. Can you block your opponent?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you find a way to identify times tables after they have been shifted up?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Have you seen this way of doing multiplication ?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

A game that tests your understanding of remainders.

Find the highest power of 11 that will divide into 1000! exactly.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.