The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Given the products of adjacent cells, can you complete this Sudoku?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Can you explain the strategy for winning this game with any target?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A collection of resources to support work on Factors and Multiples at Secondary level.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Can you find any perfect numbers? Read this article to find out more...

The clues for this Sudoku are the product of the numbers in adjacent squares.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you work out what size grid you need to read our secret message?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Substitution and Transposition all in one! How fiendish can these codes get?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Have you seen this way of doing multiplication ?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

A game that tests your understanding of remainders.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A game in which players take it in turns to choose a number. Can you block your opponent?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Can you find what the last two digits of the number $4^{1999}$ are?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?