Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A game that tests your understanding of remainders.

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Given the products of adjacent cells, can you complete this Sudoku?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Can you find a way to identify times tables after they have been shifted up?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A collection of resources to support work on Factors and Multiples at Secondary level.

Is there an efficient way to work out how many factors a large number has?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Find the highest power of 11 that will divide into 1000! exactly.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Have you seen this way of doing multiplication ?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Can you find any perfect numbers? Read this article to find out more...

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Can you find what the last two digits of the number $4^{1999}$ are?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?