Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Find out about Magic Squares in this article written for students. Why are they magic?!

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

An investigation that gives you the opportunity to make and justify predictions.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

You have 5 darts and your target score is 44. How many different ways could you score 44?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.