Search by Topic

Resources tagged with Working systematically similar to Diagonal Trace:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 340 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Working systematically

problem icon

Snails' Trails

Stage: 2 Challenge Level: Challenge Level:1

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

problem icon

Delia's Routes

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

problem icon

Rabbits in the Pen

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Using the statements, can you work out how many of each type of rabbit there are in these pens?

problem icon

Seven Flipped

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

problem icon

Factor Lines

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

problem icon

Zargon Glasses

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

problem icon

Adding Plus

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

problem icon

A-magical Number Maze

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

problem icon

Octa Space

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

problem icon

Tri-five

Stage: 2 Challenge Level: Challenge Level:1

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

problem icon

Magic Potting Sheds

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

problem icon

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

problem icon

The Moons of Vuvv

Stage: 2 Challenge Level: Challenge Level:1

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

problem icon

Polo Square

Stage: 2 Challenge Level: Challenge Level:1

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

problem icon

The Pied Piper of Hamelin

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

problem icon

Pouring the Punch Drink

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

problem icon

An Introduction to Magic Squares

Stage: 1, 2, 3 and 4

Find out about Magic Squares in this article written for students. Why are they magic?!

problem icon

Rolling That Cube

Stage: 1 and 2 Challenge Level: Challenge Level:1

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

problem icon

Button-up Some More

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

problem icon

Sums and Differences 1

Stage: 2 Challenge Level: Challenge Level:1

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

problem icon

Sums and Differences 2

Stage: 2 Challenge Level: Challenge Level:1

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

problem icon

Build it Up

Stage: 2 Challenge Level: Challenge Level:1

Can you find all the ways to get 15 at the top of this triangle of numbers?

problem icon

Build it up More

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This task follows on from Build it Up and takes the ideas into three dimensions!

problem icon

Curious Number

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

problem icon

Prison Cells

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

problem icon

Dart Target

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

problem icon

Open Squares

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

problem icon

Centred Squares

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

problem icon

Tiling

Stage: 2 Challenge Level: Challenge Level:1

An investigation that gives you the opportunity to make and justify predictions.

problem icon

Magic Vs

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

problem icon

Two Egg Timers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

problem icon

Broken Toaster

Stage: 2 Short Challenge Level: Challenge Level:1

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

problem icon

Arranging the Tables

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

problem icon

How Old?

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

problem icon

On Target

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have 5 darts and your target score is 44. How many different ways could you score 44?

problem icon

Watch Your Feet

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

problem icon

Hubble, Bubble

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

problem icon

X Is 5 Squares

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

problem icon

Uncanny Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

problem icon

Chocoholics

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

problem icon

Shapes in a Grid

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

problem icon

Symmetry Challenge

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

problem icon

Elf Suits

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

problem icon

The Problem-solving Classroom

Stage: 1 and 2 Challenge Level: Challenge Level:1

problem icon

Journeys in Numberland

Stage: 2 Challenge Level: Challenge Level:1

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

problem icon

Shape Times Shape

Stage: 2 Challenge Level: Challenge Level:1

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

problem icon

How Much Did it Cost?

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

problem icon

1 to 8

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

problem icon

More and More Buckets

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

problem icon

Eight Queens

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.