If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you replace the letters with numbers? Is there only one solution in each case?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Number problems at primary level that require careful consideration.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

An investigation that gives you the opportunity to make and justify predictions.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?