If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

This Sudoku, based on differences. Using the one clue number can you find the solution?

Given the products of adjacent cells, can you complete this Sudoku?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Four small numbers give the clue to the contents of the four surrounding cells.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

A few extra challenges set by some young NRICH members.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Find out about Magic Squares in this article written for students. Why are they magic?!

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?