What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Can you draw a square in which the perimeter is numerically equal to the area?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

These practical challenges are all about making a 'tray' and covering it with paper.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Investigate the different ways you could split up these rooms so that you have double the number.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

This activity investigates how you might make squares and pentominoes from Polydron.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

An investigation that gives you the opportunity to make and justify predictions.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

In how many ways can you stack these rods, following the rules?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How many models can you find which obey these rules?

Can you find all the different ways of lining up these Cuisenaire rods?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.