An activity making various patterns with 2 x 1 rectangular tiles.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the best way to shunt these carriages so that each train can continue its journey?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many models can you find which obey these rules?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Find out what a "fault-free" rectangle is and try to make some of your own.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?