What is the best way to shunt these carriages so that each train can continue its journey?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

These practical challenges are all about making a 'tray' and covering it with paper.

An activity making various patterns with 2 x 1 rectangular tiles.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many models can you find which obey these rules?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Can you draw a square in which the perimeter is numerically equal to the area?