An investigation that gives you the opportunity to make and justify predictions.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Can you draw a square in which the perimeter is numerically equal to the area?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

In this matching game, you have to decide how long different events take.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you make square numbers by adding two prime numbers together?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

The pages of my calendar have got mixed up. Can you sort them out?

Can you work out some different ways to balance this equation?

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.