Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

A few extra challenges set by some young NRICH members.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you replace the letters with numbers? Is there only one solution in each case?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

In this matching game, you have to decide how long different events take.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Different combinations of the weights available allow you to make different totals. Which totals can you make?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Given the products of adjacent cells, can you complete this Sudoku?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Try out the lottery that is played in a far-away land. What is the chance of winning?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?