Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the best way to shunt these carriages so that each train can continue its journey?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you find all the different ways of lining up these Cuisenaire rods?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find out what a "fault-free" rectangle is and try to make some of your own.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

An activity making various patterns with 2 x 1 rectangular tiles.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many different triangles can you make on a circular pegboard that has nine pegs?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

How many models can you find which obey these rules?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?