Can you find all the different ways of lining up these Cuisenaire rods?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Find out what a "fault-free" rectangle is and try to make some of your own.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

These practical challenges are all about making a 'tray' and covering it with paper.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Try out the lottery that is played in a far-away land. What is the chance of winning?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In this matching game, you have to decide how long different events take.

An activity making various patterns with 2 x 1 rectangular tiles.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many models can you find which obey these rules?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Investigate the different ways you could split up these rooms so that you have double the number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

The pages of my calendar have got mixed up. Can you sort them out?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?