Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In how many ways can you stack these rods, following the rules?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you work out some different ways to balance this equation?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?