Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you use the information to find out which cards I have used?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Number problems at primary level that require careful consideration.

Can you use this information to work out Charlie's house number?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you replace the letters with numbers? Is there only one solution in each case?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This dice train has been made using specific rules. How many different trains can you make?