This activity investigates how you might make squares and pentominoes from Polydron.

A challenging activity focusing on finding all possible ways of stacking rods.

Can you draw a square in which the perimeter is numerically equal to the area?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Use the clues about the symmetrical properties of these letters to place them on the grid.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

How many different symmetrical shapes can you make by shading triangles or squares?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

In how many ways can you stack these rods, following the rules?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

An investigation that gives you the opportunity to make and justify predictions.

These practical challenges are all about making a 'tray' and covering it with paper.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

An activity making various patterns with 2 x 1 rectangular tiles.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Find out what a "fault-free" rectangle is and try to make some of your own.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?