We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

What could the half time scores have been in these Olympic hockey matches?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

This challenge extends the Plants investigation so now four or more children are involved.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you use the information to find out which cards I have used?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

How many possible necklaces can you find? And how do you know you've found them all?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How many different triangles can you make on a circular pegboard that has nine pegs?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

An investigation that gives you the opportunity to make and justify predictions.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?