What happens when you try and fit the triomino pieces into these two grids?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many different rhythms can you make by putting two drums on the wheel?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

An activity making various patterns with 2 x 1 rectangular tiles.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many trains can you make which are the same length as Matt's, using rods that are identical?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many different triangles can you make on a circular pegboard that has nine pegs?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you find all the different ways of lining up these Cuisenaire rods?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.