What happens when you try and fit the triomino pieces into these two grids?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many different rhythms can you make by putting two drums on the wheel?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

These practical challenges are all about making a 'tray' and covering it with paper.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find all the different ways of lining up these Cuisenaire rods?

An activity making various patterns with 2 x 1 rectangular tiles.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.