Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

These practical challenges are all about making a 'tray' and covering it with paper.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

An investigation that gives you the opportunity to make and justify predictions.

What is the best way to shunt these carriages so that each train can continue its journey?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you find all the different ways of lining up these Cuisenaire rods?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Find all the numbers that can be made by adding the dots on two dice.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

What happens when you try and fit the triomino pieces into these two grids?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

An activity making various patterns with 2 x 1 rectangular tiles.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?