If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Find all the numbers that can be made by adding the dots on two dice.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

What is the best way to shunt these carriages so that each train can continue its journey?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How many models can you find which obey these rules?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

My coat has three buttons. How many ways can you find to do up all the buttons?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

An investigation that gives you the opportunity to make and justify predictions.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

What happens when you try and fit the triomino pieces into these two grids?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?