Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What happens when you try and fit the triomino pieces into these two grids?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

An activity making various patterns with 2 x 1 rectangular tiles.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

How many different triangles can you make on a circular pegboard that has nine pegs?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you find all the different ways of lining up these Cuisenaire rods?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.