10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

An activity making various patterns with 2 x 1 rectangular tiles.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

What happens when you try and fit the triomino pieces into these two grids?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

These practical challenges are all about making a 'tray' and covering it with paper.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge is about finding the difference between numbers which have the same tens digit.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you use the information to find out which cards I have used?

How many models can you find which obey these rules?

In how many ways can you stack these rods, following the rules?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Investigate the different ways you could split up these rooms so that you have double the number.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?