Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Have a go at balancing this equation. Can you find different ways of doing it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Can you make square numbers by adding two prime numbers together?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This challenge is about finding the difference between numbers which have the same tens digit.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you use the information to find out which cards I have used?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

What two-digit numbers can you make with these two dice? What can't you make?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you work out some different ways to balance this equation?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

You have 5 darts and your target score is 44. How many different ways could you score 44?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?