You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What happens when you try and fit the triomino pieces into these two grids?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

How many different rhythms can you make by putting two drums on the wheel?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

These practical challenges are all about making a 'tray' and covering it with paper.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many trains can you make which are the same length as Matt's, using rods that are identical?

An activity making various patterns with 2 x 1 rectangular tiles.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many different triangles can you make on a circular pegboard that has nine pegs?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?