Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

What happens when you round these three-digit numbers to the nearest 100?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

What two-digit numbers can you make with these two dice? What can't you make?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you find the chosen number from the grid using the clues?

Can you work out some different ways to balance this equation?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Number problems at primary level that require careful consideration.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

An investigation that gives you the opportunity to make and justify predictions.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you replace the letters with numbers? Is there only one solution in each case?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.