How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Investigate the different ways you could split up these rooms so that you have double the number.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many trains can you make which are the same length as Matt's, using rods that are identical?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Find out about Magic Squares in this article written for students. Why are they magic?!

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?