Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you use the information to find out which cards I have used?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Can you make square numbers by adding two prime numbers together?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?