What is the best way to shunt these carriages so that each train can continue its journey?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

My coat has three buttons. How many ways can you find to do up all the buttons?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

What happens when you try and fit the triomino pieces into these two grids?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Investigate the different ways you could split up these rooms so that you have double the number.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Using the statements, can you work out how many of each type of rabbit there are in these pens?