What is the best way to shunt these carriages so that each train can continue its journey?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What happens when you try and fit the triomino pieces into these two grids?

How many models can you find which obey these rules?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How many different triangles can you make on a circular pegboard that has nine pegs?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

These practical challenges are all about making a 'tray' and covering it with paper.

An activity making various patterns with 2 x 1 rectangular tiles.

If you had 36 cubes, what different cuboids could you make?

How many different rhythms can you make by putting two drums on the wheel?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

My coat has three buttons. How many ways can you find to do up all the buttons?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?