Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

An activity making various patterns with 2 x 1 rectangular tiles.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many models can you find which obey these rules?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What happens when you try and fit the triomino pieces into these two grids?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many different triangles can you make on a circular pegboard that has nine pegs?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

If you had 36 cubes, what different cuboids could you make?

These practical challenges are all about making a 'tray' and covering it with paper.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.