Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

I cut this square into two different shapes. What can you say about the relationship between them?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

How many models can you find which obey these rules?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

In how many ways can you stack these rods, following the rules?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

What do these two triangles have in common? How are they related?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Can you find ways of joining cubes together so that 28 faces are visible?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

An activity making various patterns with 2 x 1 rectangular tiles.

Investigate the different ways you could split up these rooms so that you have double the number.

Investigate the number of faces you can see when you arrange three cubes in different ways.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?