Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many models can you find which obey these rules?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

A challenging activity focusing on finding all possible ways of stacking rods.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This challenge extends the Plants investigation so now four or more children are involved.

Investigate the different ways you could split up these rooms so that you have double the number.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

In how many ways can you stack these rods, following the rules?

Can you find ways of joining cubes together so that 28 faces are visible?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

An activity making various patterns with 2 x 1 rectangular tiles.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.