Area i'n it

Triangle ABC has altitudes h1, h2 and h3. The radius of the inscribed circle is r, while the radii of the escribed circles are r1, r2 and r3 respectively. Prove: 1/r = 1/h1 + 1/h2 + 1/h3 = 1/r1 + 1/r2 + 1/r3 .
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem



Triangle $ABC$ has altitudes $h_1$, $h_2$ and $h_3$.

The radius of the inscribed circle is $r$, while the radii of the escribed circles are $r_1$, $r_2$ and $r_3$ respectively.

Prove:

$\begin{equation} \frac{1}{r} = \frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}. \end{equation}$

Image
Area I'n It