Write 100 as the sum of two positive integers, one divisible by 7 and the other divisible by 11.
Then find formulas giving all the solutions to
7x + 11y = 100
where x and y are integers.

Let a(n) be the number of ways of expressing the integer n as an
ordered sum of 1's and 2's. Let b(n) be the number of ways of
expressing n as an ordered sum of integers greater than 1. (i)
Calculate a(n) and b(n) for n<8. What do you notice about these
sequences? (ii) Find a relation between a(p) and b(q). (iii) Prove
your conjectures.

Screen Shot

Stage: 4 Challenge Level:

This problem gives opportunities to address processes that need
splitting into parts.

The path of the light ray switches direction at intervals, and
handling that is crucial to the problem.