Here are some pictures of 3D shapes made from cubes. Can you make these shapes yourself?

Which of these dice are right-handed and which are left-handed?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

How can we as teachers begin to introduce 3D ideas to young children? Where do they start? How can we lay the foundations for a later enthusiasm for working in three dimensions?