By Yashneal HLS

My Working Out To Negative Numbers

I started by writing the expression algebraically and went from there:

$$((-a^{-b})^{-c})^{-d}$$

where a, b, c, d are the numbers 1, 2, 3, 4 and they are each used once (in some random order).

Inside the innermost bracket we have a negative number:

$$-a^{-b} = -1 \cdot a^{-b}$$

And by raising that to the power of -c:

$$(-a^{-b})^{-c} = (-1)^{-c} \cdot (a^{-b})^{-c}$$

Since $(a^{-b})^{-c} = a^{bc}$ we get

$$(-a^{-b})^{-c} = (-1)^{-c} a^{bc}$$

Now by raising this to -d:

$$((-a^{-b})^{-c})^{-d} = ((-1)^{-c} a^{bc})^{-d} = (-1)^{-c \cdot (-d)} a^{-bcd}$$

Because $(-1)^{-c \cdot (-d)} = (-1)^{cd}$, the whole expression just simplifies to:

$$((-a^{-b})^{-c})^{-d} = (-1)^{cd} a^{-bcd}$$

- The sign (positive or negative) is given by $(-1)^{cd}$
 - If cd is even, $(-1)^{cd} = +1$ so the result is positive.
 - If cd is odd, $(-1)^{cd} = -1$ so the result is negative.
- The size (magnitude) is given by $a^{-bcd} = \frac{1}{a^{bcd}}$
 - The bigger a^{bcd} makes the final number closer to zero.
 - The smaller a^{bcd} makes the final number much larger in magnitude.

Now we need to consider a = 1, 2, 3, 4. For each a, the product bcd is the product of the three remaining numbers.

- 1. If a = 1, then $a^{-bcd} = 1^{-bcd} = 1$. So the result is ± 1 . In fact, with the order which can happen the sign is positive in those cases, so we get the value of 1
- 2. If a=2, the remaining numbers are $\{1,3,4\}$ so $bcd=1\cdot 3\cdot 4=12$. \therefore the magnitude is $2^{-12}=\frac{1}{4096}$. The final sign is +1 or -1 depending on whether cd is even or odd

By Yashneal HLS

3. If a=3, the remaining numbers are $\{1,2,4\}$ so $bcd=1\cdot 2\cdot 4=8$; the magnitude is $3^{-8}=\frac{1}{6561}$. The final sign is +1 or -1 depending on cd (but for the actual order here, the sign ends up positive)

4. If a=4, the remaining numbers are $\{1,2,3\}$ so $bcd=1\cdot 2\cdot 3=6$. \therefore the magnitude is $4^{-6}=\frac{1}{4096}$. Again, the final sign depends on whether cd is even or odd

As a result from the calculations above, the values that can occur are:

$$1 \qquad \frac{1}{4096} \qquad -\frac{1}{4096} \qquad \frac{1}{6561}$$

So there are $\boxed{4}$ distinct numbers possible.

 \therefore the largest value is: $\boxed{1}$ and the smallest value is: $\boxed{-\frac{1}{4096}}$

I decided to check all 4! = 24 possible values and using that I discovered that: