This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Sixth in our series of problems on population dynamics for advanced students.

Fifth in our series of problems on population dynamics for advanced students.

Fourth in our series of problems on population dynamics for advanced students.

Third in our series of problems on population dynamics for advanced students.

Second in our series of problems on population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

See how the motion of the simple pendulum is not-so-simple after all.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

Look at the calculus behind the simple act of a car going over a step.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

How do these modelling assumption affect the solutions?

Why MUST these statistical statements probably be at least a little bit wrong?

At what positions and speeds can the bomb be dropped to destroy the dam?

Work in groups to try to create the best approximations to these physical quantities.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Invent scenarios which would give rise to these probability density functions.

A brief video explaining the idea of a mathematical knot.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

Formulate and investigate a simple mathematical model for the design of a table mat.

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

Explore the transformations and comment on what you find.

How do scores on dice and factors of polynomials relate to each other?

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

Simple models which help us to investigate how epidemics grow and die out.

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.